MATH SOLVE

3 months ago

Q:
# Evaluate y = ln (x − 2) for the following values of x. Round to the nearest thousandth. x = 3, y = x = 4, y ≈ x = 6, y ≈

Accepted Solution

A:

The Neperian Logarithms have the number "e" as the base and are symbolized with the abbreviation "ln".

To evaluate y=ln(x − 2) for the values of x (x=3, x=4 and x=6), you must substitute those values in the function, as below:

1. x=3

y=ln(x−2)

y=ln (3-2)

y=ln(1)

y=0

2. x=4

y=ln(x−2)

y=ln(4−2)

y=ln(2)

y≈0.693

3. x=6

y=ln(x− 2)

y=ln(6−2)

y=ln(4)

y≈1.386

To evaluate y=ln(x − 2) for the values of x (x=3, x=4 and x=6), you must substitute those values in the function, as below:

1. x=3

y=ln(x−2)

y=ln (3-2)

y=ln(1)

y=0

2. x=4

y=ln(x−2)

y=ln(4−2)

y=ln(2)

y≈0.693

3. x=6

y=ln(x− 2)

y=ln(6−2)

y=ln(4)

y≈1.386